KAREKÖKLÜ SAYILAR


KONU 22: ONDALIK GÖSTERİMİN KAREKÖKÜ

BÖLÜM 1: ONDALIK GÖSTERİMİN KAREKÖKÜ NASIL HESAPLANIR?


BÖLÜM 1: ONDALIK GÖSTERİMİN KAREKÖKÜ NASIL HESAPLANIR?

Bu bölümde, önce uzun ve daha sonra kısa yoldan ondalık gösterimin karekökünü nasıl alabileceğimizi öğreniyoruz.

 

A) ONDALIK GÖSTERİMİN KAREKÖKÜ

(Ondalık gösterim ↔ kesir dönüşümleri ile ilgili sayfaya ulaşmak için buraya tıklayın.)

(Kesrin karekökü ile ilgili konu anlatımını okumak için buraya tıklayın.)

...'in hangi sayıya eşit olduğunu bulalım.

 
  • Ondalık Gösterim → Kesir Dönüşümü:

    ...

  • Kesrin Karekökü:

    ... ...

  • Kesir → Ondalık Gösterim Dönüşümü:

    ...

 

Sonuç olarak, ... sayısı ...'e eşittir.

...

Aşağıdaki örnekleri inceleyelim.

  • ... ... ... ... ...

  • ... ... ... ... ...

  • ... ... ... ... ...

  • ... ... ... ... ...
 

ONDALIK GÖSTERİMİN KAREKÖKÜNÜ ALMA İLE İLGİLİ 30 ÖRNEK İÇİN TIKLAYIN!!

B) KISA YOL

Ondalık gösterimin karekçkü-hızlı yol

Bir ondalık gösterimin virgülünü attığımızda ortaya bir tam kare sayı çıkıyorsa ve ondalık kısmında çift sayıda rakam varsa, karekökünü almak için aşağıdaki adımları izleyebiliriz.

  • Virgülün sağındaki basamakları sayarız. Bu sayıya n diyelim.
  • Virgülü atar, elde ettiğimiz tam sayının karekökünü alırız.
  • Sağında n ÷ 2 tane rakam kalacak şekilde, bir virgül koyarız.

1,44'ün karekökünü bulalım.

  • Virgülün sağında 2 tane rakam var.
  • Virgülü atarsak, 144 sayısını elde ederiz. 144'ün karekökü 12'dir.
  • Virgülün sağında 2 ÷ 2 = 1 tane rakam kalacak şekilde 12'ye virgül eklediğimizde 1,2 sayısını elde ederiz.
 

Buna göre, ...'dir.

0,0169'un karekökünü bulalım.

  • Virgülün sağında 4 tane rakam var.
  • Virgülü attığımızda, 169 sayısına ulaşırız. 169'un karekökü 13'tür.
  • Virgülün sağında 4 ÷ 2 = 2 tane rakam kalacak şekilde 13'e virgül eklediğimizde 0,13 sayısını elde ederiz.
 

...

... bir tam sayı olmak üzere, karekök içerisindeki sayıyı ... şeklinde yazabiliriz. ...'nin karekökü ... ile ...'in çarpımına eşittir. ..., bir tam kareyse, ... bir tam sayıdır. ...'nin karekökü ise ...'ye eşittir. 10'un kuvvetindeki ..., ondalık kısımdaki basamak sayısını gösterdiği için ... tam sayısında virgülü ... basamak sola kaydırdığımızda, ondalık gösterimin karekökünü elde ederiz.

Aşağıdaki karekök alma işlemlerinin sonuçlarını bulun.

a) ... = ...       b) ... = ...       c) ... = ...       d) ... = ...

e) ... = ...       f) ... = ...       g) ... = ...

CEVAPLAR

 

ALIŞTIRMALARIN CEVAPLARI

Alıştırmalar-1

a) 1,2, b) 0,15, c) 2,5, d) 0,2, e) 0,5, f) 2,1, g) 0,17

→KONU ANASAYFASINA DÖN←

Ondalık Gösterimin Karekökü  Konusuna Git